On the first day of March, a bank loans a man $£ 2500$ at a fixed rate of interest of 1.5% per month. This interest is added on the last day of each month and is calculated on the amount due on the first day of the month. He agrees to make repayments on the first day of each subsequent month. Each repayment is $\ddagger 300$ except for the smaller final amount which will pay off the loan.
(a) The amount that he owes at the start of each month is taken to be the amount still owing just after the monthly repayment has been made.
Let u_{n} and u_{n+1} represent the amounts that he owes at the starts of two successive months. Write down a recurrence relation involving u_{n+1} and u_{n}.
(b) Find the date and the amount of the final payment.

$$
\begin{aligned}
& \text { a) } \begin{aligned}
& U_{n+1}=1 \cdot 015 U_{n}-300 \\
& \checkmark \checkmark
\end{aligned}\left(\begin{array}{r}
100 \%+1.5 \%=101 \cdot 5 \% \\
\\
=1.015
\end{array}\right) \\
& \text { b) } \text { I }^{\text {st }} \text { Mar } U_{0}=2500 \\
& 1^{4} \text { Apr } U_{1}=1.015 \times 2500-300=£ 2237.50 \\
& \begin{array}{ll}
1^{5 t} & M_{\text {mg }} \\
U_{2}=1.015 \times 2237 \\
I^{t t} \text { Jun } & U_{3}=11700.63
\end{array} \\
& \text { 1* Jul } U_{4}=1 / 1426 \cdot 14 \\
& 1^{+} \text {Aug } U_{5}=11142.53 \\
& \begin{array}{l}
1^{t} \text { Sept } U_{6}=2864.74 \\
1^{+t} \text { Oct } U_{7}=\sum 577.71
\end{array} \\
& 1^{4} \text { Nov } U_{8}=\ell 286.38 \checkmark \\
& \begin{array}{r}
1^{\text {st }} \text { Dec } U_{9}=-\ell 9.32 \text { (ur last repayment } \\
\text { is too much!) }
\end{array} \\
& \text { Find upaynuant }=300-9.32 \\
& \text { = } 2290 \cdot 68 \mathrm{~J}
\end{aligned}
$$

Q2.

A recurrence relation is defined by $u_{n+1}=p u_{n}+q$, where $-1<p<1$ and $u_{0}=12$.
(a) If $u_{1}=15$ and $u_{2}=16$, find the values of p and q.
(b) Find the limit of this recurrence relation as $n \rightarrow \infty$.
a)

$$
\begin{array}{ll}
u_{n+1}=p u_{n}+q & u_{n+1}=p u_{n}+q \\
\left(u_{1}=p u_{0}+q\right) & \left(u_{2}=p u_{1}+q\right) \\
15=12 p+q(1) & 16=15 p+q \text { (2) }
\end{array}
$$

$$
15=12 p+q
$$

A sequence is defined by the recurrence relation

$$
u_{n+1}=\frac{1}{4} u_{n}+16, u_{0}=0 .
$$

(a) Calculate the values of u_{1}, u_{2} and u_{3}.

Four terms of this sequence, u_{1}, u_{2}, u_{3} and u_{4} are plotted as shown in the graph.
As $n \rightarrow \infty$, the points on the graph approach the line $u_{n}=k$, where \underline{k} is the limit of this sequence.
(b) (i) Give a reason why this sequence has a limit.

(ii) Find the exact value of k.
a) $u_{n+1}=\frac{1}{4} u_{n}+16$

$$
u_{1}=\frac{1}{4} \times 0+1 G \quad u_{2}=\frac{1}{4} \times 16+16
$$

$$
=16 \mathrm{~V}
$$

$$
=4+16
$$

$$
\begin{aligned}
u_{3} & =\frac{1}{4} \times 20+16 \\
& =5+16 \\
& =21
\end{aligned}
$$

b) i) Limit exists because $-1<\frac{1}{4}<$

$$
\left(\text { Len } \frac{1}{4} \text { lies between - } 1 \text { and 1) } \checkmark\right.
$$

(i)

$$
\begin{aligned}
K & =\frac{b}{1-a} \\
& =\frac{16}{1-\frac{1}{4}} \\
& =\frac{16}{\frac{3}{4}}=16 \div \frac{3}{4}=16 \times \frac{4}{3}=\frac{64}{3} \text { or } 21 \frac{1}{3}
\end{aligned}
$$

QU.

Two sequences are generated by the recurrence relations $u_{n+1}=a u_{n}+10$ and $v_{n+1}=a^{2} v_{n}+16$.
The two sequences approach the same limit as $n \rightarrow \infty$.
Determine the value of a and evaluate the limit.

$$
\begin{aligned}
& u_{n+1}=a u_{n}+10 \quad V_{n+1}=a^{2} V_{n}+16 \\
& L=\frac{b}{1-a} \\
& =\frac{10}{1-a} \\
& L=\frac{b}{1-a} \\
& =\frac{16}{1-a^{2}} \\
& \frac{10}{1-a}=\frac{16}{1-a^{2}} \\
& 10\left(1-a^{2}\right)=16(1-a) \\
& 10-10 a^{2}=16-16 a \\
& 10 a^{2}-16 a+6=0 \\
& 5 a^{2}-8 a+3=0 \\
& (5 a-3)(a-1)=0 \\
& 5 a-3=0 \quad a-1=0 \\
& 5 a=3 \\
& a=\frac{3}{5} \\
& \text { So } a=\frac{3}{5} \text { since }-1<a<1 \text {. } \\
& L=\frac{b}{1-a}=\frac{10}{1-\frac{3}{5}}=\frac{10}{\frac{2}{5}}=10 \div \frac{2}{5}=10 \times \frac{5}{2}=\underline{25}
\end{aligned}
$$

