# Calculating the <u>enclosed area</u> between 2 Graphs

### Calculating the <u>enclosed area</u> between 2 Graphs

This shaded area is fully <u>enclosed area</u> between 2 Graphs



### Calculating the <u>enclosed area</u> between 2 Graphs

The area enclosed between 2 graphs y = f(x) and y = g(x)

from x = a to x = b is given by the Integral:



- the integral is the difference of the two functions. You
  <u>must</u> simplify this <u>before</u> integrating.
- the limits of integration are the x-cordinates of the points of intersection between the two graphs.
- use symmetry to ease the calculations.

1) Calculate the shaded area.



1) Calculate the shaded area.



1) Calculate the shaded area.



# Calculating the <u>enclosed area</u> between 2 Graphs

p178 Ex 90 Q1(a & c)

 $(i) a) \qquad A = \int_{1}^{1} \chi - (\chi^{2} - 2\chi + 2) d\chi$ simplify this algebraic expression to ease the integrating  $= \int_{1}^{2} \chi - \chi^{2} + 2\chi - 2 d\chi$ simplify this algebraic expression to ease the integrating ~2\*+2 =  $\left( \left( 3x - x^2 - 2 \right) dx \right)$  $=\left[\frac{3x^{2}}{2}-\frac{1}{3}x^{3}-2x\right]^{2}$  $= \left(\frac{3}{2} \times 2^{2} - \frac{1}{3} \times 2^{3} - 2 \times 2\right) - \left(\frac{3}{2} \times |^{2} - \frac{1}{3} \times |^{2} - 2 \times 1\right)$  $= 6 - \frac{8}{3} - 4 - \left(\frac{3}{2} - \frac{1}{3} - 2\right)$  $= 2 - \frac{8}{3} - \frac{3}{2} + \frac{1}{3} + 2$  $-\frac{7}{3}-\frac{3}{2}$ = 4 - 2 = - =  $= \left| \frac{2}{2} - \right| \frac{1}{2}$  $= \left| \frac{4}{6} - \right| \frac{3}{6}$  $= \frac{1}{2}$  sq units

 use simultaneous equations to find the points of intersection. (only require the x-cordinates)

2) Calculate the area enclosed(trapped) between the curve  $y = 4 - x^2$  and the line y = 3x.



# Calculating the <u>enclosed area</u> between 2 Graphs

### p180 Ex 9P Q1(a,b),4 & 5