Calculating the enclosed area between 2 Graphs

Calculating the enclosed area between 2 Graphs

This shaded area is fully enclosed area between 2 Graphs

Calculating the enclosed area between 2 Graphs

The area enclosed between 2 graphs $y=f(x)$ and $y=g(x)$ from $x=a$ to $x=b$ is given by the Integral:

$$
A=\int_{a}^{b}(f(x)-g(x)) d x
$$

- the integral is the difference of the two functions. You must simplify this before integrating.
- the limits of integration are the x-cordinates of the points of intersection between the two graphs.
- use symmetry to ease the calculations.

Lesson 7. Calculating the Enclosed Area between 2 Graphs.notebook

1) Calculate the shaded area.

Use symmetry to ease calculations:

$$
\begin{aligned}
& =\int_{0}^{3}\left(9-x^{2}\right) d x \\
& =\left[9 x-\frac{x^{3}}{3}\right]_{0}^{3} \\
& =9 \times 3-\frac{3^{3}}{3}-\left(9 \times 0-\frac{0^{3}}{3}\right) \\
& =27-9-0 \\
& =188 \\
\text { Total Area } & =2 \times 18 \\
& =36 \text { sq units }
\end{aligned}
$$

Lesson 7. Calculating the Enclosed Area between 2 Graphs.notebook

1) Calculate the shaded area.

OR
Use symmetry to ease calculations:

$$
\begin{aligned}
\underbrace{x=10-x^{2}} A & =2 \int_{0}^{3} 19-2 x^{2}-\left(10-x^{2}\right) d x \\
& =2 \int_{0}^{3}\left(9-x^{2}\right) d x \\
& =2\left[9 x-\frac{x^{3}}{3}\right]_{0}^{3} \\
& =2 \times\left(9 \times 3-\frac{3^{3}}{3}-\left(9 \times 0-\frac{0^{3}}{3}\right)\right) . \\
& =2 \times(27-9-0) \\
& =2 \times 18 \\
& =36 \text { squats units }
\end{aligned}
$$

Lesson 7. Calculating the Enclosed Area between 2 Graphs. notebook

1) Calculate the shaded area.

Not using symmetry to ease calculations:

$$
\begin{aligned}
& A=\int_{-3}^{3} 19-2 x^{2}-\left(10-x^{2}\right) d x \\
& =\int_{-3}^{3} 19-2 x^{2}-10+x^{2} d x \\
& =\int_{-3}^{3} 9-x^{2} d x \\
& =\left[9 x-\frac{x^{3}}{3}\right]_{-3}^{3} \\
& =9 \times 3-\frac{3^{3}}{3}-\left(9 \times-3-\frac{(-3)^{3}}{3}\right) \\
& =27-9-\left(-27-\frac{-27}{3}\right) \\
& =18-(-27+9) \\
& =18-(-18) \\
& =36 \text { squnits }
\end{aligned}
$$

Calculating the enclosed area between 2 Graphs

$$
\text { p178 Ex } 90 \text { Q1 (a \& c) }
$$

Lesson 7. Calculating the Enclosed Area between 2 Graphs. notebook

$$
\begin{aligned}
& \text { 1) a) } A=\int_{1}^{2} x-\left(x^{2}-2 x+2\right) d x \\
& =\int_{1}^{2} x-x^{2}+2 x-2 d x x_{x^{2}-2 x+2}^{y=x} \\
& =\int_{1}^{2}\left(3 x-x^{2}-2\right) d x \\
& =\left[\frac{3 x^{2}}{2}-\frac{1}{3} x^{3}-2 x\right]_{1}^{2} \\
& =\left(\frac{3}{2} \times 2^{2}-\frac{1}{3} \times 2^{3}-2 \times 2\right)-\left(\frac{3}{2} \times 1^{2}-\frac{1}{3} \times 1^{3}-2 \times 1\right) \\
& =6-\frac{8}{3}-4-\left(\frac{3}{2}-\frac{1}{3}-2\right) \\
& =2-\frac{8}{3}-\frac{3}{2}+\frac{1}{3}+2 \\
& =4-\frac{7}{3}-\frac{3}{2} \\
& =4-2 \frac{1}{3}-1 \frac{1}{2} \\
& =1 \frac{2}{3}-1 \frac{1}{2} \\
& =1 \frac{4}{6}-1 \frac{3}{6} \\
& =\frac{1}{6} \text { squnits }
\end{aligned}
$$

Lesson 7. Calculating the Enclosed Area between 2 Graphs.notebook

- use simultaneous equations to find the points of intersection. (only require the x-cordinates)

2) Calculate the area enclosed(trapped) between the curve $y=4-x^{2}$ and the line $y=3 x$.

Working

$A=\int_{-4}^{1}\left(4-x^{2}-3 x\right) d x$

$$
=\left[4 x-\frac{x^{3}}{3}-\frac{3 x^{2}}{2}\right]_{-4}^{1}
$$

$$
=4 \times 1-\frac{1^{3}}{3}-\frac{3 \times 1^{2}}{2}-\left(4 \times(-4)-\frac{(-4)^{3}}{3}-\frac{3 \times(-4)^{2}}{2}\right)^{2}
$$

$$
=4-\frac{1}{3}-\frac{3}{2}-\left(-16+\frac{64}{3}-24\right)
$$

$$
=4-\frac{1}{3}-\frac{3}{2}+16-\frac{64}{3}+24
$$

$$
=44-\frac{65}{3}-\frac{3}{2}
$$

$$
\begin{aligned}
& =44-21 \frac{2}{3}- \\
& =22 \frac{1}{3}-1 \frac{1}{2}
\end{aligned}
$$

$$
=21 \frac{2}{6}-\frac{3}{6}
$$

$$
\begin{aligned}
& =21 \frac{6}{6}+20 \frac{6}{6}-\frac{1}{6} \\
& =21-\frac{1}{6} \rightarrow 20 \frac{5}{6} \\
& =20 \frac{5}{6} \text { sq units }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\text { POI }}{\overline{y=3 x} \quad y=4-x^{2}} \\
& 3 x=4-x^{2} \\
& y=4-x^{2} \quad x^{2}+3 x-4=0 \\
& (x+4)(x-1)=0 \\
& x=-4 \quad x=1
\end{aligned}
$$

Calculating the enclosed area between 2 Graphs p180 Ex 9P Q1(a,b), 4 \& 5

