2. PQRS is a parallelogram whose diagonals meet at E . P is the point $(-2,-2), \mathrm{Q}$ is $(0,2)$ and E is $(2,0)$. Find the equation of the line RS.

$$
\begin{aligned}
& M_{P Q}=M_{R S} \\
& M_{P Q}=\frac{2+2}{0+2} \\
&=\frac{4}{2}
\end{aligned}
$$

$$
=2 \sqrt{ } \text { So } M_{R S}=2
$$

$$
y-b=m(x-a)
$$

$$
y-2=2(x-6) \sqrt{ }
$$

$$
y-2=2 x-12
$$

$$
2 x-y-10=0
$$

$$
O R=\quad y=2 x-10
$$

3. A triangle ABC has vertices $\mathrm{A}(2,5)$. $\mathrm{B}(4,-1)$ and $\mathrm{C}(10,5)$.
(a) Write down the equation of the perpendicular bisector of AC .
(b) Find the equation of the altitude CD.
(c) Find the point of intersection of these two lines.

$$
\begin{aligned}
M_{1 d-p t} \text { of } A C & =\left(\frac{2+10}{2}, \frac{5+5}{2}\right) \\
& =(6,5) \\
M_{A C} & =\frac{5-5}{10-2} \\
& =\frac{0}{8} \\
& =0 \sqrt{ }(\text { Horizontal }) \\
M_{\text {pert }} & =\infty(\text { Vertical }) \sqrt{ }
\end{aligned}
$$

Equation
b)

$$
\begin{aligned}
M_{A B} & =\frac{5+1}{2-4} \\
& =\frac{6}{-2} \\
& =-3
\end{aligned}
$$

$$
\text { So } M_{\text {alt }}=\frac{1}{3} \sqrt{(10,5)} \underset{a^{\prime}}{(1,}
$$

$$
\begin{aligned}
y-b & =m(x-a) \\
y-5 & =\frac{1}{3}(x-10) \quad(x 3) \\
3 y-15 & =x-10 \\
x-3 y & +5=0
\end{aligned}
$$

c)

$$
\left.\begin{array}{rl}
x-3 y+5 & =0 \\
6-3 y+5 & =0 \\
-3 y+11 & =0 \\
3 y & =11 \\
y & =\frac{11}{3} \\
\left(6, \frac{11}{3}\right)
\end{array}\right\}
$$

4. A triangle has vertices $\mathrm{A}(1,1), \mathrm{B}(3,5)$ and $\mathrm{C}(11,1)$.
(a) Show that triangle ABC is right angled at B .
(b) Find the equations of the medians AD and BE
(c) $A D$ and $B E$ intersect at M. Find the coordinates of M.
a)

$$
\begin{aligned}
M_{A B} & =\frac{5-1}{3-1} \quad M_{B C}
\end{aligned}=\frac{5-1}{3-11}=\begin{aligned}
& A(1,1)=\frac{4}{-8} \\
&=2 V \\
&=-\frac{1}{2} \\
& C(11,1)
\end{aligned}
$$

b) Mid-pt $B C=\left(\frac{3+11}{2}, \frac{5+1}{2}\right) \quad M_{\text {med }}=\frac{3-1}{7-1}$

$$
\begin{aligned}
& =(7,3) \sqrt{2} \quad\left(\text { or } M_{A D}\right)=\frac{2}{6} \\
& a=\frac{1}{3} v \\
& y-b=m(x-a) \\
& y-3=\frac{1}{3}(x-7) \\
& 3 y-9=x-7 \\
& x-3 y+2=0
\end{aligned}
$$

Median BE

$$
\begin{aligned}
& M_{\text {id -pt }} A C=\left(\frac{1+11}{2}, \frac{1+1}{2}\right) \quad M_{\text {med }}=\frac{5-1}{3-6} \\
&\left.=(6,1) \sqrt{ } \quad \text { or } M_{\text {BE }}\right)=\frac{4}{-3} \checkmark \\
& a, b \\
& y-b=m(x-a) \\
& y-1=-\frac{4}{3}(x-6) \checkmark \times 3 \\
& 3 y-3=-4(x-6) \\
& 3 y-3=-4 x+24 \\
& 4 x+3 y-27=0
\end{aligned}
$$

$$
\text { c) } \quad x-3 y+2=0
$$

$$
4 x+3 y-27=0
$$

$$
\text { ADD } 5 x-25=0
$$

$$
\begin{aligned}
& 5 x=25 \\
& x=5
\end{aligned}
$$

$$
\begin{aligned}
& \text { find } y \\
& \left.\begin{array}{c}
x-3 y+2=0 \\
5-3 y+2=0 \\
7-3 y=0 \\
7=3 y \\
y=\frac{7}{3} \\
\left(5, \frac{7}{3}\right)
\end{array}\right\}
\end{aligned}
$$

5. A triangle has vertices $\mathrm{L}(1,1), \mathrm{M}(7,-2)$ and $\mathrm{N}(8,10)$.
(a) Find the equation of the altitude NP.
(b) Find the coordinates of P .
a) $M_{L M}=\frac{1+2}{1-7}$

$$
=\frac{3}{-6}
$$

$$
=-\frac{1}{2} \sqrt{a}
$$

$$
M_{a H t}=2 \sqrt{ }(8,10)^{b}
$$

$$
y-b=m(x-a)
$$

$$
y-10=2(x-8)
$$

$$
y-10=2 x-16
$$

$$
2 x-y-6=0 \quad \text { or } \quad y=2 x-6
$$

b) Require equation of line LM

$$
\begin{aligned}
& M_{L M}=-\frac{1}{2}(\text { from (a) }) \\
& y-b=m(x-a) \\
& y-1=-\frac{1}{2}(x-1) \quad(1,1) \\
& 2 y-2=-(x-1) \\
& 2 y-2=-x+1 \\
& x+2 y-3=0
\end{aligned}
$$

$$
x+2 y-3=0
$$

$$
2 x-y-6=0 \times 2
$$

$$
\left.\begin{array}{r}
x+2 y-3=0 \\
\begin{array}{l}
4 x-2 y-12=0 \\
5 x-15=0 \\
5 x
\end{array} \\
x=15
\end{array} \quad \begin{array}{r}
\text { find } y \\
x+2 y-3=0 \\
3+2 y-3=0 \\
2 y=0 \\
y=0 \\
(3,0)
\end{array}\right\}
$$

7. Triangle DEF has vertices $(2,3),(-3,-2)$ and $(3,0)$ respectively.
(a) Find the equations of the perpendicular bisectors of the sides EF and DF.
(b) Find the coordinates of T, the point of intersection of these lines.
(c) Show that D, T and E are collinear
a)

Mid-pt EF $=\left(\frac{-3+3}{2}, \frac{-2+0}{2}\right) \quad$ Midpt $D F=\left(\frac{2+3}{2}, \frac{3+0}{2}\right)$
b)

$$
x-3 y+2=0 \quad y=-3 x-1
$$

$$
\begin{array}{ll}
x-3(-3 x-1)+2=0 & \text { find } y \\
x+9 x+3+2=0 & y=-3 x-1
\end{array}
$$

$$
10 x+5=0
$$

$$
10 x=-5 \quad=\frac{3}{2}-\frac{2}{2}
$$

$$
\begin{aligned}
X & =-\frac{5}{10} \\
& =-\frac{1}{2}
\end{aligned} \quad=\frac{1}{2} J\left(-\frac{1}{2}, \frac{1}{2}\right)
$$

c) $D(2,3) \quad T\left(-\frac{1}{2}, \frac{1}{2}\right) \quad E(-3,-2)$

$$
M_{D T}=\frac{\frac{1}{2}-3}{-\frac{1}{2}-2} \quad M_{T E}=\frac{-2-\frac{1}{2}}{-3+\frac{1}{2}}
$$

$$
=\frac{-2.5}{-2.5} \quad=\frac{-2.5}{-2.5}
$$

$$
=15 \checkmark=1 J
$$

Lines DT and $T E$ are paralld $\operatorname{since} M_{D T}=M_{T E}$ and the points D, T and E are collinear since T is a common point.

$$
\begin{align*}
& =(0,-1) \checkmark \\
& =\left(\frac{5}{2}, \frac{3}{2}\right) V \\
& y=-3 x-1 \quad \begin{array}{ll}
4 \\
\sqrt{4} \begin{array}{l}
\text { g-nteropt } \\
\text { so } \\
y=m x+c
\end{array} & y-b=m(x-a) \\
y=\frac{3}{2}=\frac{1}{3}\left(x-\frac{5}{2}\right)
\end{array} \tag{xbyb}\\
& 6 y-9=2\left(x-\frac{5}{2}\right) \\
& 6 y-9=2 x-5 \\
& 2 x-6 y+4=0 J(\div b y 2) \\
& x-3 y+2=0
\end{align*}
$$

10. A kite ABCD has diagonals AC and BD .

AC has equation $2 \mathrm{y}=\mathrm{x}-2$.
D is the point $(6,-3)$.
(a) Find the equation of the diagonal BD .
(b) Find the coordinates of the point of intersection of these diagonals.

a)

b)

$$
\text { b) } \begin{aligned}
& x-2 y-2=0 \\
& 2 x+y-9=0 \quad \times 2 \\
& x-2 y-2=0 \\
& 4 x+2 y-18=0 \\
& \hline 5 x-20=0 \\
& 5 x=20 \\
& x=4
\end{aligned}
$$

find y

$$
\begin{gathered}
x-2 y-2=0 \\
4-2 y-2=0 \\
2-2 y=0 \\
2 y=2 \\
y=1
\end{gathered}
$$

11. Triangle ABC has vertices $\mathrm{A}(2,2), \mathrm{B}(12,2)$ and $C(8,6)$.
(a) Write down the equation of the perpendicular bisector of AB .
(b) Find the equation of the perpendicular bisector of AC.
(c) Find the point of intersection of these lines.
a)

$$
\begin{aligned}
& A(2,2) \quad B(12,2) \\
& M_{A B}=\frac{2-2}{12-2} \\
&=\frac{0}{10} \\
&=0 \quad(\text { Horizontal })
\end{aligned}
$$

$$
\text { So } M_{p e r p}=\infty(\text { Vertical })
$$

$$
\text { Mid-pt } A B=\left(\frac{2+12}{2}, \frac{2+2}{2}\right)
$$

$$
=(7,2)
$$

$$
\operatorname{So} \quad X=7
$$

$$
\text { b). Mid-pt } \begin{aligned}
A C & =\left(\frac{2+8}{2}, \frac{2+}{2}\right. \\
& =(5,4)
\end{aligned}
$$

$$
M_{A C}=\frac{6-2}{8-2}
$$

$$
=\frac{4}{6}
$$

$$
=\frac{2}{3}
$$

$$
\text { So } M_{\text {per }}=-\frac{3}{2}
$$

$$
\begin{gather*}
y-b=m(x-a) \\
y-4=-\frac{3}{2}(x-5) \\
2 y-8=-3(x-5) \\
2 y-8=-3 x+15 \\
3 x+2 y-23=0
\end{gather*}
$$

$$
\begin{aligned}
& (5,4) \\
& a
\end{aligned}
$$

c). $x=7$ from port (a)

$$
\begin{aligned}
& 3 x+2 y-23=0 \\
& 3 \times 7+2 y-23=0 \\
& 21+2 y-23=0 \\
& 2 y-2=0 \\
& 2 y=2 \\
& y=1 \\
&(7,1)
\end{aligned}
$$

12. P, Q and R have coordinates $(2,-1),(7,4)$ and $(10,15)$ respectively and are three vertices of a kite PQRS.
(a) Find the equations of the diagonals of this kite and the coordinates of the point where they intersect.
(b) Find the coordinates of the fourth vertex S.

$$
\text { a). } \begin{aligned}
& \text { Line } P R \\
& M_{P R}=\frac{15+1}{10-2} \\
&=\frac{16}{2} \\
&=2 \sqrt{(2,-1)} \\
& y-b=m(x-a) \\
& y+1=2(x-2) \\
& y+1=2 x-4 \\
& y x-y-5=0
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\text { Line QS } \\
M_{Q S}=-\frac{1}{2} V(\sin \varphi \\
(7,4) \\
a, 1_{b} \\
y-b=m(x-a) \\
y-4=-\frac{1}{2}(x-7) \\
2 y-8=-(x-7) \\
2 y-8=-x+7 \\
x+2 y-15=0
\end{array}\right.
$$

