Differentiation Non-Calculator HW

1)

A curve has equation $y=x-\frac{16}{\sqrt{x}}, \quad x>0$.
Find the equation of the tangent at the point where $x=4$.
2)

Find the coordinates of the point on the curve $y=2 x^{2}-7 x+10$ where the tangent to the curve makes an angle of 45° with the positive direction of the x-axis.
3)

Given that $f(x)=\sqrt{x}+\frac{2}{x^{2}}$, find $f^{\prime}(4)$.
4)

Find the equation of the tangent to the curve $y=2 \sin \left(x-\frac{\pi}{6}\right)$ at the point where
$x=\frac{\pi}{3}$. $x=\frac{\pi}{3}$.
5)

If $f(x)=\cos (2 x)-3 \sin (4 x)$, find the exact value of $f^{\prime}\left(\frac{\pi}{6}\right)$.

6)

The point $\mathrm{P}(x, y)$ lies on the curve with equation $y=6 x^{2}-x^{3}$.
(a) Find the value of x for which the gradient of the tangent at P is 12 .
(b) Hence find the equation of the tangent at P .
7)

Given that $y=\sqrt{3 x^{2}+2}$, find $\frac{d y}{d x}$.

8)

A function f is defined by $f(x)=(2 x-1)^{5}$. Find the coordinates of the stationary point on the graph with equation $y=f(x)$ and determine its nature.

9)

PQRS is a rectangle formed according to the following conditions:

- it is bounded by the lines $x=6$ and $y=12$
- P lies on the curve with equation $y=\frac{8}{x}$ between $(1,8)$ and $(4,2)$
- R is the point $(6,12)$.

(a) (i) Express the lengths of PS and RS in terms of x, the x-coordinate of P .
(ii) Hence show that the area, A square units, of PQRS is given by

$$
A=80-12 x-\frac{48}{x}
$$

(b) Find the greatest and least possible values of A and the corresponding values of x for which they occur.
10)

The diagram below shows the graph of a quartic $y=h(x)$, with stationary points at $x=0$ and $x=2$.

On separate diagrams sketch the graphs of:
(a) $y=h^{\prime}(x)$;
(b) $y=2-h^{\prime}(x)$.

