Changing the Subject of a Formula

Changing the Subject of a Formula
1)

Change the subject of the formula

$$
r=3 p+2 t
$$

to p.

$$
\begin{aligned}
r & =3 p+2 t \\
-2 t & -2 t \\
3 p & =r-2 t \\
\div 3 & \div 3 \\
p & =\frac{r-2 t}{3} \text { or } p=\frac{1}{3}(r-2 t)
\end{aligned}
$$

2)

Change the subject of the formula

$$
P=2(L+B)
$$

to L.

$$
\begin{aligned}
P & =2(L+B) & \text { or }, & P
\end{aligned}=2(L+B)
$$

3)

$$
P=R^{2} b-5
$$

Change the subject of the formula to R

$$
\begin{aligned}
& \underset{+5}{P}=R^{2} b-5 \\
& +5 \\
& R^{2} b=P+5 \\
& \div b=\frac{4}{4} \\
& R^{2}=\frac{P+5}{b} \\
& \sqrt{3} \\
& R=\sqrt{\frac{P+5}{b}}
\end{aligned}
$$

4)

Change the subject of the formula $m=\frac{3 x+2 y}{p}$ to x.

$$
\begin{aligned}
& m=\frac{3 x+2 y}{p} \\
& \times p \\
& m p=3 x+2 y \\
&-2 y \\
& 3 x=m p-2 y \\
& \div 3 \\
& x=\frac{m p-2 y}{3} \text { or } x=\frac{1}{3}(m p-2 y)
\end{aligned}
$$

5)

Change the subject of the formula

$$
\frac{x}{c}+a=b
$$

to x.

$$
\begin{aligned}
& \frac{x}{c}+a=b \quad \text { or } \quad \frac{x}{c}+a=b \\
& \begin{aligned}
x+a c & =b c \quad-a c
\end{aligned} \quad \frac{x}{c}=b-a \\
& \begin{aligned}
x+a c & =b c \quad-a c
\end{aligned} \quad \frac{x}{c}=b-a \\
& \begin{aligned}
x+a c & =b c \quad-a c
\end{aligned} \quad \frac{x}{c}=b-a \\
& x=b c-a c \sqrt{x}=c(b-a)
\end{aligned}
$$

6)

Change the subject of the formula

$$
A=\frac{1}{2} h(a+b)
$$

to h.

$$
\begin{aligned}
A & =\frac{1}{2} h(a+b) \\
\times 2 & \times 2 \\
2 A & =h(a+b) \\
\div(a+b) & \div(a+b) \\
h & =\frac{2 A}{a+b}
\end{aligned}
$$

7)

Change the subject of the formula

$$
K=\frac{m^{2} n}{p}
$$

to m.

$$
\begin{aligned}
& K=\frac{m^{2} n}{p} \\
& \times p \times p \\
& K p=m^{2} n \\
& \div n \\
& m^{2}=\frac{\dot{K}^{n}}{n} \\
& N=\sqrt{\frac{K p}{n}}
\end{aligned}
$$

8)

A formula used to calculate lighting efficiency is

$$
E=\frac{I}{D^{2}}
$$

Change the subject of this formula to D.

$$
\begin{aligned}
& E=\frac{I}{D^{2}} \\
& \times D^{2} \\
& E D^{2}=\frac{\times D^{2}}{\square} \\
& \div E \\
& D^{2}=\frac{ \pm}{E} \\
& D=\sqrt{\frac{I}{E}}
\end{aligned}
$$

9)

Change the subject of the formula

$$
p=q+\sqrt{a}
$$

to a.

$$
\begin{array}{rl}
p & =q+\sqrt{a} \\
-q & -q \\
\sqrt{a} & =p-q \\
s q & s q \\
a & =(p-q)^{2}
\end{array}
$$

$$
\begin{array}{cc}
s q & s q \\
25= & (2+3)^{2} X
\end{array}
$$

10)

Change the subject of the formula $s=u t+\frac{1}{2} a t^{2}$ to a.

$$
\begin{aligned}
S= & u t+\frac{1}{2} a t^{2} \\
\times 2 & \times 2 \\
2 s= & 2 u t+a t^{2} \\
-2 u t & -2 u t \\
a t^{2} & =2 s-2 u t \\
\div t^{2} & \div t^{2} \\
a= & \frac{2 s-2 u t}{t^{2}}
\end{aligned}
$$

11)

Change the subject of the formula $L=\sqrt{4 k t-p}$ to k.

$$
\begin{aligned}
& L=\sqrt{4 k t-p} \\
& s q \\
& L^{2}= \\
& +p \\
& 4 k t-p \\
& 4 k t=L^{2}+p \\
& K+\frac{L^{2}+p}{4 t}
\end{aligned}
$$

12)

Change the subject of the formula $F=\frac{t^{2}+4 b}{c}$ to b.

$$
\begin{aligned}
& F=\frac{t^{2}+4 b}{c} \\
& F_{c}=t^{2}+4 b \\
& \begin{array}{l}
-t^{2}-t^{2} \\
4 b=F-t^{2}
\end{array} \\
& 5=\frac{F C-t^{2}}{4}
\end{aligned}
$$

